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I. AN OVERVIEW OF TURBULENT FLOW SIMULATION 

A. Introduction 

Most flows of technological interest are turbulent, at least in some regions. For 
many of these flows, relatively simple prediction methods suffice to produce results 
of engineering accuracy. For others, mainly in high technology applications, more 
complex prediction methods are required. Computers now routinely run methods 
whose use would not have been considered even ten years ago. As the state of the 
art of computers has advanced, so has the range and size of the tasks demanded of 
them, a trend that will continue for the foreseeable future. 

Early applications of computers in turbulent fluid mechanics were essentially 
automated versions of existing methods; this type of code is still in common use. As 
larger, faster, machines came along, more complex flow models were applied. Two 
areas of fluid dynamics that were in their infancy twenty years ago-computational 
fluid dynamics and turbulence modeling-have become heavily populated. 

As users become ever more sophisticated, there will be a constant demand for 
improvement. Bigger, faster, and less expensive computers will always be important 
but, if maximum benefit is to be obtained from them and smaller existing machines, 
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three other areas need attention. These are: computational algorithms (which can 
be subdivided into discretization methods and solution techniques), methods of 
dealing with complex geometries, and turbulence models. These areas are discussed, 
albeit briefly, in this paper. 

The introduction of supercomputers has made possible entirely new approaches 
to fluid dynamics. One can now simulate simple turbulent flows accurately and use 
the results as a complement and/or partial substitute for laboratory data. The com- 
puter thus becomes a tool for studying the physics and modeling of turbulence. The 
methods used are called large eddy and full simulation. 

B. Levels of’ Turbulent Flo14, Sirnulution 

Kline, Lilley, and Cantwell [35] suggested a classification scheme for methods of 
turbulent flow simulation; this scheme was used with slight modification at the 1981 
Conference on Complex Turbulent Flows (Ferziger, Bardina, and Allen [23]. A 
short summary of this scheme will be given here; readers are referred to the original 
papers for an elaboration of it. The scheme contains six levels: 

(i) Correlations. For flows in standard geometries for which sufficient data 
are available, well-established engineering correlations do an adequate job. 

(ii) Integrul Methods. Prior to the introduction of computers, methods in 
which the time averaged NavierStokes equations are reduced to ordinary differen- 
tial equations by integration over one or more coordinates were the most com- 
plicated ones in common use. Nonlinearities in the original equations prevent 
closure of the resulting equations so that approximations and/or correlations are 
required in these integral methods. 

(iii ) Onr- Point-Avrrugy Meth0d.y. Methods based on one-point (time or 
ensemble) averages of the NavierrStokes equations have become very popular in 
recent years. A number of models of this type have been developed. These include 
one- and two-equation and Reynolds stress models; they will be reviewed below. 

(iv) T,t,o-Point-Ar~ru~e Methods. To permit explicit information on length 
scales of the turbulence to enter the model, methods based on two-point averages of 
the Navier-Stokes equations have been introduced. It is not yet clear whether these 
methods will prove practical for flows in complex geometries but they are of value 
in studying turbulence models. 

(v) Lurge Eddy Sinlulution (LES). This method calculates the large-scale 
structures of the turbulence explicitly, while modeling the small ones. It is three 
dimensional and time dependent, and provides considerable detail about a flow. 
This makes it a valuable tool for investigating both the physics of turbulence and 
the models used to represent it. Its application is currently limited to simple flows 
and relatively low Reynolds numbers. It is too expensive for direct engineering use 
at the present time, but may see limited use in engineering design as the cost of 
supercomputers comes down and their numbers increase. 
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(vi) Full-Turhulrnce Simulation (FTS). In this approach, one solves the 
unaveraged time dependent Navier-Stokes equations for a turbulent flow 
numerically. The set of flows which can be treated in this way is small, but its 
accuracy makes FTS a complement to laboratory experiments for investigation of 
both physics and turbulence models. It is also ideal for investigating phenomena 
associated with the small scales of turbulence, especially subgrid scale models for 
large-eddy simulation. 

With respect to this scheme, we should note: 

(a) Methods at each level compute more details of a flow than those at lower 
levels, albeit at increased cost. 

(b) Higher level model computations are generally less sensitive to the 
quality of the turbulence model than lower level ones. However, a lower-level model 
may, in a particular case, be more accurate than a higher-level one, due to better 
tuning or calibration or greater availability of the necessary data. 

(c) The range of flows that may be simulated with a given model becomes 
broader as the level increases. 

(d) The numerical methods used at each level differ. 

(e) The amount of detail in the laboratory data required to provide initial 
and/or boundary conditions increases significantly with increasing level. 

The working engineer will normally use methods at the lowest level capable of 
producing the desired accuracy. 

In this paper, we shall concentrate on methods at levels (iii), (v), and (vi). 
Although we shall try to unify them, separate treatment is needed in some areas. 

A cautionary note: A number of authors refer to their programs as 
“Navier-Stokes solvers.” Nearly all of these programs actually solve an averaged 
form of the NavierStokes equations rather than the exact form, i.e., they are at 
level (iii) of the above scheme rather than level (vi). They would better be called 
Reynolds averaged Navier-Stokes (RANS) solvers. 

C. Full Field versus Zonal Treatment 

Use of the same set of equations everywhere in a flow, a single grid system over 
the entire domain, the same numerical approximation everywhere, and solution of 
the complete system of equations as a unit is very appealing. Unfortunately, for 
complex flows, this approach may be cumbersome and require too many grid 
points and too much computer time. Practical considerations dictate that different 
methods be used in different parts of the flow; differences in any or all of the com- 
ponent areas may be needed. 

First, consider turbulence modeling. There is enormous appeal as well as con- 
siderable simplicity to using a single universal model. Unfortunately, turbulence 
physics differs considerably from zone to zone in most flows. Modeling any one of 
these zones is a difficult task; fitting all with a single model is much more difficult 
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and may not be possible at all; at the least, a complicated model would probably be 
required. Consequently, the author and some of his colleagues are not of the 
opinion that models need to be matched to the nature of each zone within a flow; 
the zonal models then need to be patched together. This approach may also better 
illuminate the areas in which new data are needed. 

Second, consider geometry. Technological considerations dictate geometry; 
shapes may be quite complicated. While it is possible to map any region into a rec- 
tangle, finding the mapping for complex shapes can be very difficult; indeed, 
generation of the mapping can become a significant part of the total cost of a flow 
simulation. Furthermore, it is difficult to arrange the grid points to provide 
resolution where it is most needed; often the locations where resolution is needed 
most are not known in advance. Again, it is the opinion of the author and some of 
his colleagues that it is best not to use a single mapping for the entire flow. 
Patching together geometrically simple regions may be a better approach. 

Third, consider numerical approximation. All three types of partial differential 
equations occur in fluid mechanics: hyperbolic, parabolic, and elliptic; often various 
zones of a single flow are of different types. Each type generally requires a different 
numerical treatment. The choice of numerical approximation may also depend on 
cell Reynolds number, flow direction, or other parameters. Consequently, it is not 
unusual to use different finite difference methods in different parts of the flow. 

Finally, solution techniques which are efficient for one type of flow or one region 
of a flow perform poorly in other flows or regions. To circumvent this, one can use 
different solution techniques in different parts of the flow. 

Thus, in every aspect of the numerical computation of turbulent flows, the trend 
seems to be toward methods which depend on the local properties of the flow. We 
call such methods zonal methods. This is at present a catchall phrase; the nomen- 
clature will need refinement as the field develops. It is certain that fluid dynamics 
codes of the future will be more complicated than those of the past. 

D. Error Assessment 

A nagging difficulty in turbulent flow computation and, indeed, in many related 
areas is that of assessing and controlling errors. Compounding the problem is the 
fact that errors arise from several distinct sources. First, turbulence models may not 
accurately represent the physics of turbulence. Second, errors arise from numerical 
approximations; these may be due to the mapping, the finite difference 
approximation, and/or the lack of complete convergence of the solution technique. 
It is a rare case in which the error in a numerical solution is accurately evaluated 
and still more rare to find attribution of the sources of the error. 

If the accuracy of turbulence models is to be assessed, numerical methods capable 
of solving a given set of equations with assured accuracy are needed. Grid 
refinement is the traditional way of assessing numerical error; while it is valid if the 
errors are small enough, it is always very costly. New methods of assessing and con- 
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trolling errors are badly needed. The most promising avenue of attack on this 
problem at the present time is the use of solution adaptive grids. 

E. Outline qf This Paper 

We have laid out a number of issues that need to be addressed. Each could 
occupy a review paper of its own; most have been the subjects of such papers. 
Rather than attempting an exhaustive review of each issue, we shall attempt to 
integrate them into a whole. In so doing, we shall provide only enough detail of 
each area to show how the parts fit together and to point out where the major 
remaining difficulties lie. 

These issues will occupy the remainder of this paper. In Section II, turbulence 
models will be discussed. Section III addresses the treatment of geometric com- 
plexity, Section IV will discuss the need for conservation of important variables. 
Discretization is taken up in Section V and solution methods in Section VI. Some 
special methods are described in Section VII, and Section VIII summarizes the 
present state of the art. Completeness is neither claimed not attempted in any area. 

II. REYNOLDS AVERAGE TURBULENCE MODELS 

A. The Reynolds Stresses 

This section will concentrate on models used in conjunction with the Reynolds- 
averaged Navier-Stokes equations. This review is brief; readers desiring a more 
extensive survey are referred to the monograph by Rodi [54] or the earlier review 
by Reynolds [52]. This section is also limited in scope; compressibility, heat trans- 
fer, combustion, and other issues are not dealt with here. 

To set the stage, let us briefly examine why turbulence models are needed. The 
time-dependent, incompressible Navier-Stokes equations are, in tensor notation, 

(2.1) 

where u,(r, t) is the local fluid velocity, p the density, p the pressure, and p the 
viscosity. These equations must be solved together with the continuity equation, 
which requires the velocity field to be divergence-free: 

& 
ax; - 0. (2.2) 

This equation is linear and causes no problems so far as averaging is concerned. 
The mean velocity field may be defined by any of a number of averaging 

operations; ensemble averaging, time averaging, and averaging over spatial coor- 
dinates in which the mean flow is homogeneous have been used. Any of these 



6 JOEL H. FERZIGER 

averages, together with the notion that the velocity can be decomposed into a mean 
and turbulent fluctuations, i.e., U, = U, + u(, where U; and u: represent the mean 
and fluctuating velocities, respectively, leads to the Reynolds-averaged 
Navier-Stokes equations 

(2.3) 

It is important to observe that the mean velocity is a defined quantity and may not 
capture the physics of a turbulent flow. Indeed, the observation that long times are 
required to achieve stable averages in the laboratory should make one cautious 
about accepting the mean-turbulent decomposition as anything more than a con- 
venience. 

The terms puiu, m Eq. (2.3) are called the Reynolds stresses. They result from the 
nonlinearity of Eq. (2.1) and represent the effect of the turbulence on the mean field. 
Their presence results in the unknowns outnumbering the equations and the system 
not being closed. Closure is a central problem in simulating turbulent flows. 

B. The Ed<v Viscosit~~ Concept 

Two of the most important effects of turbulence on the mean flow are: (i) it 
absorbs kinetic energy from the mean flow and converts it to thermal energy 
(dissipation), and (ii) it increases the rate of transport of mass, momentum, and 
energy normal to the streamlines of the flow (diffusion). As both of these effects are 
mediated by the viscosity in laminar flows, it is natural to assume that the effect of 
turbulence on the mean flow can be represented as an increased, or eddy, viscosity. 
This leads to 

(2.4) 

as a model of the Reynolds stresses in turbulent flows; here k = u,u,/2 and v7. is the 
eddy viscosity. 

To close Eq. (2.3) with the model (2.4), one must either express the eddy 
viscosity in terms of the mean velocity or provide equations which govern its 
evolution. Both approaches are used. For shear flows, the most important class of 
flows in practice, the most significant components of the Reynolds stress tensor are 
its off-diagonal elements. In two-dimensional flows, the only off-diagonal element is 
I u u , and the eddy viscosity becomes the coefficient of proportionality between this 
Reynolds shear stress and rate of hear, dU/dy. Good correlations for the eddy 
viscosity in two-dimensional flows are available (see below). However, the propor- 
tionality assumed in Eq. (2.4) is not correct in general and should be used with 
caution in more complex flows. In three dimensions, the situation is much more dif- 
ficult, as the eddy viscosity should be regarded as a fourth-rank tensor. 
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The simplest descriptions of turbulence are those which characterize it by its 
kinetic energy, pq2/2, and an average length scale, L. In terms of these, dimensional 
analysis shows that the eddy viscosity, which carries dimensions L’/T, must be writ- 
ten 

\: T = CqL (2.5) 

where q and L are velocity and length scales of the turbulence, respectively, and C 
is an empirical constant or a function of dimensionless parameters. This is the basis 
of a number of models; some are described in the following two sections. 

C. Mixing Length Models 

To use Eq. (2.5), we need expressions for q and L. In mixing length models, q and 
L are written as algebraic expressions involving the mean velocity field. 

For shear flows, experiments show that, far from solid walls, the largest tur- 
bulence length scales are some fraction of the width of the shear layer; the latter is 
then the natural length scale. Near a solid boundary, the distance to the surface 
bounds the size of the eddies and becomes the natural length scale. In the region 
closest to the wall, a further correction for viscous effects is required. Thus, for wall- 
bounded flows, the length scale typically has the distribution depicted in Fig. 1. For 
free shear flows, a constant length scale usually suffices. 

0.09 
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1 

FIG. I. The mixing length distribution in a turbulent boundary layer. 
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To complete the model, an expression for the turbulent kinetic energy or, 
equivalently, the turbulent velocity scale, q, is required. The production of turbulent 
kinetic energy is proportional to the product of the rate of shear and the turbulent 
kinetic energy itself (see below). Using this and an assumption that the production 
and dissipation of turbulence energy are in local balance, one can show that a good 
approximation to the local turbulent velocity scale is 

(2.6) 

(cf. Tennekes and Lumley [59]). For three-dimensional flows, one replaces aU/a~ 
by the r.m.s. strain rate of the mean field. This model was first derived by Prandtl 
using different arguments. 

Although some of the arguments used to derive them are open to question, 
mixing-length models have proven of great value in a variety of simple flows. Their 
simplicity makes them easy to modify to account for effects such as pressure 
gradients, curvature, and transpiration through a wall. Kays, Moffat, and their 
students (cf. Kays and Crawford [31]) have made a long series of experiments to 
investigate these effects and have built a model which does an excellent job for a 
wie range of boundary layers. Cebeci and Smith (cf. Cebeci and Bradshaw [ 131) 
have an equally good alternative model. An example of what this model can do is 
shown in Fig. 2; equally good results can be obtained for free shear flows. 
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FIG. 2. The velocity profile in a turbulent boundary layer as calculated by the mixing length model. 
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Mixing-length models are excellent for simple, i.e., single-zone, flows. Their chief 
deficiency is in switching from one type of region to another, e.g., from a boundary 
layer to a free shear layer, within a single flow, as is required in simulations of 
separated flows. They do not include history effects on the turbulence. Indeed, good 
models for the mixing length and the turbulent velocity scale for flows containing 
separation and reattachment do not exist, although the BaldwinLomax model 
(Baldwin and Lomax [5]) has been used in this application. This deficiency of 
mixing-length models is one of the principal reasons for the development and 
popularity of two-equation models. 

D. Ti1,o-Equation (k - E) Models 

The first step beyond the mixing length is a model in which the length scale is 
prescribed, but the evolution of the turbulence kinetic energy is determined by a 
partial differential equation; these are called one-equation models. As the weakness 
of the mixing-length model is due as much to the inadequacy of the length scale as 
to the velocity scale assumptions, one-equation models are not much of an 
improvement on mixing-length models. We shall therefore bypass them and 
proceed to the two-equation models, which are finding a great deal of application 
at present. 

Two-equation models were first developed by Hariow and Hirt [73] and later 
developed by Jones and Launder [30] and have since been used in many 
applications. These models employ the Boussinesq eddy-viscosity concept, Eq. (2.4) 
but the evolution of both the velocity and length scales is obtained by solving par- 
tial differential equations. An equation for the turbulent kinetic energy determines 
the velocity scale. This equation can be derived from the Navier-Stokes equations 
by subtracting the mean equation from the unaveraged equation to obtain an 
equation for the fluctuating velocity. Taking the scalar product of this equation 
with the fluctuating velocity and averaging according to any of the methods men- 
tioned above yields the equation for the turbulent kinetic energy: 

(3k (7 
7r+r U,k= -u,u, -(z+z)-r$$+Diffusion, 

CS, 
(2.7) 

Convection 

where k = 9’12. 

Production Dissipation 

The significance of the convective term is clear; the production term accounts for 
creation of new turbulence energy from the mean field; the dissipation term 
represents the conversion of turbulence energy to thermal energy by the action of 
viscosity; the diffusion term, which we have not written explicitly, contains third- 
order correlations of the fluctuating velocity and pressure-velocity correlations. The 
convection term is exact, the production term can be computed from the model 
itself, the method of obtaining the dissipation is explained below, and the diffusion 
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term must be modeled. We shall not pursue this further here; the interested reader 
is referred to the references cited above for details. 

This leaves the question of how to obtain the length scale and the dissipation 
term in Eq. (2.7). One of the best accepted arguments in turbulence theory is that 
the dissipation, s, and the integral length scale, L, are related by 

c = Cq”/L. (2.8) 

Since the dissipation occurs in the energy equation and it can be related to the 
length scale by Eq. (2.8) one is led to using an equation for the dissipation as a 
means of obtaining the length scale. Other possibilities have been tried, but none 
has had as much success as this one. 

An equation for the dissipation can be derived from the Navier-Stokes equation 
by an extension of the method used to derive the energy equation and has a similar 
form 

;+ irUE Production Destruction 
I = 
dx, 

of of + Diffusion (2.9) 
Dissipation Dissipation 

Convection 

Here the convection term causes no problem, but all the others require modeling. 
The modeling used in one popular version of the k - E model is given in Table I and 
is taken from Rodi [54]. 

TABLE I 

Rodi’s X ~ i: Model 

where 

is the production 

- c 
(7lJ, iu, u;u; = I’r -4-7 , I%, ,‘.I- .> 

and the constants are 

C,, = 1.44, Cz, = 1.92, CJ~ = 1.0, g, = 1.3, C,, =0.09 
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As stated earlier, two-equation models (and the k-s model in particular) are 
quite successful and have become very popular. With only little modification, they 
are able to simulate a large variety of flows with reasonable accuracy, including 
flows that are difficult to treat with mixing-length models. 

Despite this success, caution is need. Although it is rare for the standard k-c 

model to be badly in error, it is often not accurate enough for engineering purposes, 
particularly in applications demanding high accuracy. In the latter, well-tuned 
mixing-length models may sometimes be more accurate. One needs to be especially 
careful about accepting results for flows which are very different from those for 
which the model was calibrated. 

Some specific problem areas are the following: 

(i) In flows which are three-dimensional in the mean, experience with these 
models is limited. What evidence is available indicates that the models have dif- 
ticulty in simulating the effect on turbulence of the changes in mean-flow direction 
across the shear layers in these flows. The Boussinesq stress-strain relationship (2.4) 
is not valid under these conditions, forcing one to use a more complex model which 
takes the history of the Reynolds stress into account. 

(ii) In highly strained flows, the model badly overpredicts the production of 
turbulence (Lee and Reynolds [36]). 

(iii) In natural convection flows, two-equation models are incapable of 
predicting the production of vorticity by the action of buoyancy, and more complex 
models are required (Naot, Shavit, and Wolfshtein [47]). 

(iv) In compressed flows, the dissipation cannot act to determine both the 
destruction of turbulence energy and the length scale, and a third equation must be 
added to the model (Wu, Ferziger, and Chapman [66]). 

There are undoubtedly other flows which demonstrate weaknesses of the two- 
equation model, but these examples argue for the caution recommended above. 

E. Reynolds Stress Models 

Although they have had many successes, two-equation models have a number of 
deficiencies, some of which are consequences of the eddy-viscosity relationship for 
the Reynolds stresses. In addition to the items mentioned above, they cannot 
predict counter-gradient fluxes, i.e., fluxes which tend to increase rather than 
decrease the gradient of a quantity; there are important flows in which such fluxes 
exist. Perhaps more significantly, models based on the eddy-viscosity concept 
produce abrupt and sometimes large changes in the Reynolds stresses when a new 
strain is applied to the mean flow; this is at odds with observation. 

Reynolds stress models were developed to eliminate these problems. They are 
based on evolutionary equations for the Reynolds stresses which can be derived in 
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much the same way as the turbulent kinetic-energy equation. There results a set of 
equations that can be written: 

Convection Production 
+ Diffusion 

Dissipation Redistribution 

Most of the terms in these equations are analogs of terms in the turbulent 
kinetic-energy equation (which is the trace of these equations). The new element is 
the redistribution term which produces transfer among the components of the 
Reynolds stress tensor. The new terms, plus the fact that all terms are now tensors, 
make modeling considerably more difficult. These models contain more constants 
than the models described above. This provides the hope of greater universality but 
also increases the difficulty of finding the relationships and constants needed. The 
problem is made more difficult by the lack of methods of measuring fluctuating 
pressure in turbulent flow. This prevents accumulation of the data needed. 

Reynolds stress models have been applied to relatively few engineering flows to 
date but have found some application in meteorology. Their record is mixed. The 
model rectifies some of the shortcomings of the simpler models, but in the 
1980-1981 Stanford meeting (Kline etul. [3.5]) it was found to be no better on 
average than the models described above. More recently, Lee and Reynolds [36] 
have found that a complicated model is needed even to deal with homogeneous tur- 
bulence. Tzuoo et ul. [63] found that, even for homogeneous flows, Reynolds stress 
models need to be tailored to the type of strain imposed (see Sect. G). As this model 
is also more expensive to apply, its future is not necessarily assured. 

As mentioned above, Reynolds stress models were developed to overcome 
deficiencies in mixing length and two-equation models. However, they are not 
without problems of their own; the question is whether the benefits outweigh the 
costs. On the deficit side of the ledger, Reynolds stress models nearly double the 
cost of computing a given flow and contain terms which are very difficult to 
measure in the laboratory. Their development has been relatively slow; the major 
difficulty seems to be the lack of accurate data on which to base them. 

F. Algebraic Stress Models 

An approach to modeling which attempts to obtain the advantages of both two- 
equation and Reynolds stress models (with as few of the disadvantages as possible) 
was proposed by Rodi [53]; this is the algebraic approach to turbulence modeling. 
This approach begins with the Reynolds stress model equations, but, for steady 
flows, reduces the number of differential equations by making approximations to 
the terms which contain spatial derivatives. In particular, the convection and dif- 
fusion terms are approximated in terms of local variables and derivatives of mean 
quantities. The result is that the partial differential equations for the Reynolds 
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stresses are reduced to a system of algebraic equations at each point in the flow. 
Equations for the turbulence kinetic energy and dissipation are retained, and the 
resulting model is only slightly more expensive in application than the two-equation 
model. 

This model has considerable appeal, as it offers the advantages of both of the 
preceding approaches with few of the disadvantages. In practice, it seems to per- 
form as well as two-equation models but no better. However, as there is less 
experience with algebraic methods than with two-equation models, it may be that 
algebraic models will improve as they mature. 

G. Zonal Models 

At the present state of the art in turbulence modeling, one can use models with 
confidence only to simulate flows which are not too different from those used to 
calibrate the models; caution is required when new flows are computed. To use 
Bradshaw’s term, the models are postdictive rather than predictive in nearly all 
instances. 

All of the turbulence models presented above are based on the notion that high- 
order moments of the fluctuating velocity can be represented as unique functionals 
of the low-order moments. This idea was borrowed from the kinetic theory of gases, 
where it can be justified rigorously and works well. Unfortunately, the experimental 
evidence is that, in turbulent flows, this assumption is not correct. In all flows for 
which there are data, the low-order moments reach their final values before the 
high-order ones do. Thus a fundamental premise of much of turbulence modeling is 
apparently incorrrect. 

What is one to do? Turbulence modeling is difficult, and good new ideas are rare. 
A lot has been accomplished with the existing models, and one ought to take 
advantage of the accumulated knowledge. A change in point of view offers a 
possibility. Rather than regarding them as scientific laws, one can think of tur- 
bulence models as sophisticated engineering correlations. Compared to the 
correlations at level (i) that were described in Section I.-B, they are at a much more 
fundamental level. A single model allows the prediction of many more flows in a 
greater range of geometries than do the simple correlations. If we then admit that a 
universal model may not be attainable and adopt a more pragmatic approach, we 
are led to the idea of zonal modeling (Kline [34]). 

Over the past decade, experimenters have shown that there are coherent struc- 
tures which are responsible for much of the important physics of turbulent flows. 
The structures differ from flow to flow in simple flows, so no single model should be 
expected to represent the physics of all of them. However, it may be possible to find 
a separate model for each type of flow; in fact, it should be much easier to do so, 
provided the list of flows for which modeling is needed is not too large; this appears 
to be the case. 

In complex flows, including nearly all flows of interest in technology, there are a 
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number of regions or zones with differing physics. Separated flows, for example, 
have both free shear layers and boundary layers. In each zone, one can use a model 
appropriate to its physics. In the transitions from one zone to another, some kind 
of blending model is required. Since models for many of the zones already exist, the 
development of the blending models is the most difficult part of the task. This idea 
has been tested in a simple way by one of the author’s students for homogeneous 
flows and found to work very well (Tzuoo et ul. [63]). It shares a philosophy with 
the well-known mathematical method of patching together asymptotically correct 
solutions. Testing on more complex flows is in progress. 

III. TREATMENT OF GEOMETRICALLY COMPLEX FLOWS 

We noted earlier that many technologically important flows involve geometries 
that do not fit easily into standard coordinate systems. The simulation of flows in 
arbitrarily shaped regions has received much more attention for compressible flow, 
but much of what has been done can be applied to incompressible flow as well. The 
area is far too broad to be covered in detail here; for further information, the 
interested reader is referred to the references cited below. 

The choices of methods of dealing with geometric complexity and discretizing the 
equations are closely connected. A large majority of the computations of incom- 
pressible flows have used staggered grids, which require rectangular or other simple 
coordinate systems. Consequently, they have mainly dealt with simple geometries. 

The oldest methods for dealing with irregular shapes employ rectangular grids. 
Intersections of the grid lines with the domain boundaries are taken as nodes. This 
causes some boundary grids to bti much smaller than the interior grids. Difference 
formulas on these grids produce large and irregular truncation errors near the 
boundary, resulting in nnsatisfactory solutions. A related method which uses a 
“staircase” fit to the boundary also yields poor results. These methods may make a 
comeback when embedding or adaptive methods are developed. 

Finite element methods were developed specifically to deal with arbitrary 
geometries; they do this very well. Taken together with their variational base, this 
has gained them dominance in solid mechanics. Their principal disadvantage is that 
the cost of solving the discretized equations is larger than for finite-difference 
methods; work on reducing the cost is in progress. In fluid mechanics, some of the 
advantages of finite elements vanish, and it is not clear whether they are the method 
of choice. Furthermore, nearly any significant development in finite difference 
methods is quickly adapted to finite elements and vice versa, so it is sufficient to 
discuss one or the other. For a more complete discussion of finite element methods 
for fluid mechanics, see Baker [4]. 

At present, the most popular method of dealing with complex geometries is to 
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map the flow domain onto a simpler region, such as a rectangle. For two-dimen- 
sional problems, this has proved successful, particularly for compressible flows. 
Although this approach becomes very complicated for extremely complex 
geometries (e.g., multiply-connected regions) or three dimensions, mapping 
methods will be useful as components of more advanced methods. We shall give a 
short overview of this subject in this section and end with a review of some recent 
developments in adaptive and patched grids. 

B. Mupping Methods 

As noted above, the poor fit of rectangular grids to the boundaries of irregular 
domains accurately can lead to large errors. A coordinate system fitted to the 
domain boundary can eliminate this problem. Such coordinate systems must be 
curvilinear but need not be orthogonal. Of course, the coordinate lines must not be 
too nearly parallel; a rule of thumb requires the grid lines to cross at no less than 
45”. 

A mapping appropriate to a two-diminsional wing is illustrated in Fig. 3. Due to 
the shape of the coodinate surfaces, this is called an O-mapping; C- and H-map- 
pings are also frequently employed. In the case illustrated, the body is mapped into 
the lower boundary of the computational coordinate system. The outer boundary of 
the physical coordinate system, which is the computational approximation to the 
far-field boundary conditions, is mapped into the upper boundary of the transfor- 
med domain, while the two parts of the cut required by the multivalued nature of 
the coordinate system become the lateral boundaries of the transformed system. 

FIG. 3. Grid system for the computation of flc IW about a two-dimensional wing generated by the 
elliptic mapping method. Figure provided by C. He ,ssenius. 
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Several methods of generating body-fitted coordinate systems have been 
proposed. All have advantages, but none is clearly superior to all others. Con- 
sequently, a number of methods are in current use. In this section, we briefly 
describe three popular approaches. The descriptions are brief; for details, the reader 
is referred to the cited papers. 

The methods described in this section involve making a transformation of the 
independent variables from the physical coordinates (x, 11) to computational coor- 
dinates (t, ‘I) such that the considered region becomes a rectangle in computational 
space. The first two methods we shall consider generate the transformation via the 
solution of partial differential equations. However, computing [(x, y), ~(x, y) 
requires generating this solution in the original geometry, a problem we are trying 
to avoid. Consequently, the standard practice is to compute the inverse transfor- 
mation, x(<, II), ~(4, PI), which can be done in the transformed rectangular domain. 
A typical derivative appearing in the NavierStokes equations is, in two dimen- 
sions, 

where J = .Y( ?‘,I - I, ~9: is the Jacobian of the transformation. 
In the remainder of this section, we shall look at some particular coordinate 

transformations. 

2. Elliptic Mupping Methods 

One method of generating mappings uses elliptic partial-differential equations. 
An obvious choice uses the potential and streamlines of the potential flow in the 
given geometry as computational coordinates. However, that approach does not 
give enough control over the spacing of the grid points. To permit greater control 
of the grid spacing, Thompson, Thames, and Mastin [61] suggested using a 
Poisson equation: 

(3.2) 

as a grid generator; the source term allows control of the grid density in almost any 
way the user likes. As mentioned above, one actually solves for the inverse transfor- 
mation; this requires solution of a modified Poisson equation in the transformed 
coordinate system. 

3. Hyperbolic Mapping Method 

The elliptic mapping scheme just described has a number of advantages, 
including flexibility. Its principal disadvantage is that elliptic equations require 
iterative solution. As a result, the cost of generating the coordinate transformation 
may become a significant fraction of the total cost of solving the problem. This led 
Sorenson and Steger [56] to introduce hyperbolic methods for grid generation. 

Hyperbolic equations offer the advantage that they can be solved by noniterative 
marching methods. For the wing-shaped body of Fig. 3, one assigns the body a 
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fixed value of one coordinate, t, say, and assigns values of q around the body. The 
directions of the lines q = constant are fixed by requiring them be orthogonal to the 
body, and the next line of constant t is fixed by requiring all of the grid volumes to 
be equal (other choices are possible). This leads the following equations for the 
coordinates. 

.Y<.Y, + I’; ya = 0 (orthogonality), (3.3a) 

xc ys - 1’ xv= I : (volume). (3.3b) 

One then solves these equations by a marching procedure until the coordinates 
have been extended sufficiently far from the body. 

The principal difficulty with this approach is control. If the body is peculiarly 
shaped, the coordinate lines may cross and extra logic is needed. The method is 
also difficult to apply to multiply connected regions. 

4. Algrhruic Mupping Methods 

A number of other methods of generating grids have been suggested. At present, 
the two presented above are among the most popular, but other methods are still 
frequently used. 

A simple approach is to draw a grid system on the physical region in the manner 
of a draftsman. One then supplies the coordinates of the grid points to the com- 
puter, and all of the derivatives required are computed numerically. This has the 
advantage relative to the method described above that the computer can use 
his/her experience to place the grid points where they are most needed. However, 
the disadvantages of requiring a great deal of personal attention and the difficulty 
of applying it in three-dimensional grids have reduced the popularity of this 
approach. If artificial intelligence methods such as expert systems can be used to 
automate this method, it may prove valuable in the future. 

Another alternative has been advocated by Eiseman and colleagues (Eiseman 
and Smith [21]). In this method, the considered region is broken into a number of 
smaller, geometrically simple regions, each of which can be fit with a simple grid. 
The grids are made to match on their boundaries. 

C. Patched Grids 

For geometries that are very complicated, especially multiply-connected and 
three-dimensional domains, the grid-generation methods described above do not 
work well. There seems to be general agreement that a good strategy is to divide 
the domain on which the computation is to be done into geometrically simpler sub- 
domains, each of which can be gridded by the techniques described above; this is 
sometimes called a zonal method. There is not yet agreement, however, on whether 
the grids should overlap or not. The argument in favor of the non-overlapping 
approach that it wastes no grid points. The advocates of overlapping grids claim 
faster convergence and greater flexibility as their chief advantages. 
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Rai [SO] has given a method using non-overlapping patched grids. Figure 4 
shows a grid of this type used by Hessenius and Rai [28]. These authors have poin- 
ted out the need for careful attention to conservation at the subdomain boundaries. 
A similar method has been given by Mastin and McConnaughey [45]. 

Overlapping patched grids have been used by Glowinski et al. [72]. A major 
effort centers on the development of fast solution strategies for this type of grid. 

D. Adaptive Grids 

Fluid flows contain phenomena on a wide range of length scales; thin layers 
occur in many kinds of flows. Well-known examples are boundary layers on solid 
surfaces, shock waves, and hydraulic jumps. Resolution of these thin layers is often 
essential to the achievement of an accurate overall solution. Resolution requires 
that these thin layers be covered with a substantial number of grid points. Unfor- 
tunately, in most gridding procedures, including those described in Section B, 
putting enough points where they are needed also places an unnecessarily large 
number of poin ts in regions where they are not needed. 

The problem is made still more difficult when the location of the thin regions is 

FIG. 4. A composite or zonal grid for a two-airfoil configuration. Adapted from Hessenius and 
Rai [28]. 
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not known a priori. It is then impossible to generate a satisfactory grid in advance 
of computing the flow. Instead, the grid must be adjusted as the solution proceeds; 
techniques of this kind are called solution adaptive gridding methods. Such 
methods have been developed only recently; we shall discuss some of the more 
promising methods; there is no agreement as yet on which methods are best. 

Adaptive procedures are made up of several parts. First, there must be a means 
of detecting where additional grid points are needed. Then a procedure for inserting 
or moving the grid points is required. Finally, depending on the strategy adopted, 
either a means of initializing the data on the new grid or a method of passing infor- 
mation between the grids is required; the choices may depend on the nature of the 
problem. 

Since thin layers contain large derivatives of at least some flow variables, one 
strategy for detecting where refinement is required is based on determining where 
large derivatives occur and creating grids line enough to compute them accurately. 
Such strategies have been adopted by Dwyer, Kee, and Sanders [ZO] and by 
Anderson and his colleagues (cf. Anderson [ 11). These methods work quite well for 
some problems but have difftculty in others. 

An alternative strategy was proposed by Berger [9]. In this approach, the error 
is detected by computing the solution on two grids of different refinement; these are 
normally the grid on which one actually wishes to do the calculation and one twice 
as coarse. The error is obtained from a Richardson-type estimator of the kind used 
in ordinary differential equations; for a first-order method, one would use 

(3.4) 

where cJ,, is the solution obtained with a grid of size h. This requires that the error 
be expressible as a series in h, which is usually the case. The points with large errors 
are grouped into clusters which are fit with rectangles; for efficient coverage, the 
rectangles are allowed to have arbitrary rotation and to overlap. An example of the 
kind of grid produced by this method is shown in Fig. 5. 

For some types of problems, including many hyperbolic and parabolic equations, 
the coarse grid solution can be accepted as accurate outside the refinement region 

FIG. 5. An illustration of the adaptive grid procedure of Berger [9] 
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and used to provide boundary conditions to the liner grids. In other problems, par- 
ticularly elliptic ones, it is necessary to iterate between the coarse and line grids. In 
either case, the method can be used recursively: grids are nested until the desired 
accuracy is achieved; Berger reported cases with as many as six levels of grids. 
This method has the advantage that the grids tend to align with the flow, thus 
minimizing numerical diffusion (see Sect. V). 

IV. CONSERVATION LAWS AND THEIR INTERACTION WITH NUMERICAL METHODS 

A. Consemation Properties 

Incompressible flow computation offers mathematical difficulties absent in com- 
pressible flow; these affect the choice of numerical method in a strong way. In 
incompressible flows, the momentum equation is responsible for both momentum 
and kinetic energy conservation; compressible flows have a separate energy conser- 
vation equation. The absence of a time derivative in the continuity equation is 
another manifestation of this problem. Methods of solving the incompressible 
equations that conserve both momentum and energy are not easily constructed. 

The primary issue considered in this section is global conservation of mass, 
momentum, and kinetic energy; these are important properties of the 
NavierStokes equations whose preservation in the discretized equations is of con- 
siderable importance. There may be further properties whose global conservation is 
of significance, depending of flow type. 

The global conservation laws may be derived by integration of the differential 
conservation equations over a finite volume. The resulting equations state that the 
total amount of the conserved quantity in the macroscopic volume is changed only 
by flows through the surface of that volume; in the case of kinetic energy, there is a 
volumetric viscous dissipation term. 

For the incompesssible NavierStokes equations (2.1), momentum conservation 
is generally easy to preserve in the discretization process; it follows easily if each 
term of the continuum equation is written as a divergence, i.e., in so-called conser- 
vation form. Kinetic energy conservation, on the other hand, is a bit more difficult. 
One takes the scalar product of Eq. (2.1) with the velocity and integrates over the 
larger control volume. For the convective and pressure gradient terms, one must 
use the chain rule for differentiation (or its equivalent, partial integration) and the 
continuity equation (2.2). The resulting macroscopic form of the energy conser- 
vation equation is 

d -j !?f!!!LdV=-[ 
dr L 2 d,y(y+P)uids,+ P{ssutds, 

Flow work Surface Viscous 

iru- i?u- 
-!J L-!&f 

v dx, ax, 
Dissipation 

Stresses 
(4.1) 
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which states that the rate of change of kinetic energy in the control volume is due 
entirely to surface terms and viscous dissipation. 

A discretization scheme is said to be conservative if it satisfies a numerical form 
of Eq. (4.1). Numerical global conservation equations are derived by the discrete 
equivalent of the procedures followed for the continuum equations. The problem is 
that the discretized operators may not possess all of the necessary properties. In 
particular, many finite difference approximations do not admit the chain rule. 
Finding a conservative scheme then becomes a hit-or-miss affair. An excellent 
example of a scheme that has many desirable conservation properties is that of 
Arakawa [2]. 

There has been considerable controversy over whether a method needs to be fully 
conservative or not. There is evidence on both sides of this issue. It appears that 
fully conservative methods are less prone to instability, particularly when iterative 
solution methods are used. However, accurate solutions have been obtained with 
nonconservative methods. 

We offer a speculation about the necessity of conservation in discretization 
schemes. Nonconservative methods almost certainly contain artificial sources of 
properties that are not explicitly conserved. If the artificially produced property can 
leave the computational region through advection or diffusion, it need not build up 
and instability may be avoided. Destruction of the artificially introduced property 
by artifical sinks is possible, but relying on this mechanism for stabilization is 
potentially dangerous. Thus, it appears that stability may depend on the flow being 
simulated and the method used to solve the discretized equations, as well as the dis- 
cretization method. If this speculation is correct, flows with closed streamlines are 
more likely to yield numerical instability than flows without recirculation. Similarly, 
time-like methods (see Sect. VI for a definition) are more likely to be unstable than 
direct methods. 

B. A Conscrvutiw Form of‘ the Navier--Stokes Equutions 

Although the equations of fluid dynamics are conservation equations, it is com- 
mon to talk about conservative and nonconservative forms of these equations. In 
the former, each term of the equation is the divergence of a vector. The incom- 
pressible NavierStokes equations, can easily be written in a momentum-conser- 
vative form. Unfortunately, as we have seen, demonstration of energy conservation 
requires something more. This, and the lack of a chain rule for many discrete 
operators, makes the construction of methods conservative of both momentum and 
kinetic energy a difficult task. 

This difficulty can be circumvented by writing the Navier-Stokes equations in a 
form that does not require the chain rule for the demonstration of energy conser- 
vation. Such a form was provided by Mansour et al. [43], 

(4.2 1 
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For these equations, energy conservation follows from symmetry, and almost any 
discretization scheme yields both momentum and energy conservation. This form of 
the equations has been used by the author and his colleagues; the price paid is a 
modest increase in the cost of a computation. 

C. Staggered versus Standard Grids 

In compressible flow calculations all variables are normally located at the same 
grid points. This type of grid is also used for incompressible flow simulations but 
the staggered grid arrangement is more common in this application. 

Introduction of the staggered grid is usually credited to Harlow and Welsh [26], 
but it may have been used earlier. As shown in Fig. 6 for the two-dimensional case, 
the staggered grid locates the various components of the velocity and the pressure 
at different grid points. The control volumes used for each variable are also dif- 
ferent, as illustrated in Fig. 6. The difference equations for this grid will be given in 
Section V. For now, we point out that the staggered grid is more accurate than the 
regular grid and difference schemes that conserve mass (continuity), momentum, 
and energy are easily constructed for it. Treatment of the boundary conditions is 
also easier when this coordinate system is used, especially for the pressure. 

V. DISCRETIZATION METHODS 

A. Model Equations 

We next consider the discretization of the partial differential equations of fluid 
mechanics. Finite element methods, although very important, are not covered here. 
As we saw in Chapter IV, conservation laws need to be taken into account in the 

u P u P u 

v  

V 

FIG. 6. The location of the velocity components and the pressure in the two-dimensional staggered 
grid. Also shown are the control volumes for the Y momentum W, y momentum a, and continuity r7 
equations. 
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construction of discretization schemes. Furthermore, there are important interac- 
tions between discretization procedures and the solution techniques which will be 
covered in Chapter VI. 

The partial differential equations of fluid mechanics are nonlinear and too com- 
plex to allow straightforward analysis of discretization methods; thus there are 
essentially no analyses of numerical methods for the full equations. Consequently, 
we must use model equations as stand-ins for the actual equations. Selection of 
what is essential in the Navier4tokes equations is critical; various choices lead to 
different and, sometimes, contradictory conclusions. In this section, we shall look at 
some common choices and the analyses based on them. 

Interest centers on high Reynolds-number flows, for which the viscous terms are 
of little importance. In many flows there are large regions in which the pressure 
gradient plays no significant role; in these regions, this term can be neglected. The 
time derivative term is retained in order to study time-like methods (see Sect. VI). 
The convective terms are nonlinear so, to render them amenable to analysis, we 
linearize them to obtain 

(5.1) 

i.e., the unsteady convection equation for a passive scalar. This equation is fre- 
quently used as a model for study of numerical methods for the Navier-Stokes 
equations. 

The analysis of methods for Eq. (5.1) usually begins by discretizing the convec- 
tion term and analyzing the stability of the resulting semidiscretized equation by the 
von Neumann method (Isaacson and Keller [75]). The problem then reduces to 
analysis of ordinary differential equation methods, albeit with complex coefficients. 
The results for the one-dimensional version of Eq. (5.1) are as follows: 

(a) Any method which approximates the derivative of eik’ by a purely 
imaginary multiple of e’l“, when used in conjunction with Euler’s method for time 
advancement, is unconditionally unstable. This is equivalent to the well-known 
instability of the Euler method on the imaginary axis. Discretization methods for 
the convective term which have this property include the well-known central dif- 
ference approximation: 

(5.2) 

and spectral methods. 

(b) Explicit time-advancement methods which are stable on some part of the 
imaginary axis for ordinary differential equations yield conditionally stable methods 
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when applied to the convection equation. For any such method, the stability 
criterion takes the form: 

CFL=z$const. (5.3) 

This is the CouranttFriedrichssLewy condition; CFL is the Courant or CFL 
number. 

(c) An implicit method based on the trapezoid rule (CrankkNicolson) is 
neutrally stable when applied to this equation. Neutral stability is a desirable 
property, and the CrankkNicolson method is valuable whenever implicit methods 
can be used without severe cost penalties. However, when applied to nonlinear 
equations, the method may be unstable or dissipative. 

(d) In order to avoid the instability associated with combination of central 
differencing and the Euler time-advance method (point (a) above), upwind differen- 
cing is often used, i.e., instead of Eq. (5.2) we have: 

(5.4) 

for c > 0. For c < 0, (Us + , - u,)/dx is used to estimate the spatial derivative. The 
use of the upstream velocity in the difference approximation gives the method its 
name. The Euler method applied to this equation is conditionally stable, obeying 
Eq. (5.3) with CFL = 1. The computational molecule for this method also mimics 
the characterics of Eq. (5.1) better than the molecule for Eq. (5.2). 

The stability produced by upwind differencing has made it popular. However, 
this method is only first-order accurate; in fact, to first order in Ax, it is equivalent 
to replacing the one-dimensional form of Eq. (5.1) by the modified equation 

(5.5) 

The error has the form of a viscous term with artificial viscosity v, = c AX/~. In high 
Reynolds-number flows, the artificial viscosity dominates the true viscosity and the 
solution produced is much smoother than the correct one. 

The results for the unsteady convection equation in two or three dimensions are 
nearly the same as those for one dimension. Euler’s method in conjunction with 
central differencing is unstable, and upwind differencing is often used to stabilize the 
method. Each spatial derivative is estimated by a one-sided difference whose direc- 
tion depends on the sign of the velocity component in that direction. The CFL con- 
dition (5.3) becomes 

CFL=(-$$+E) At<const. 

and the extension to three dimensions is fairly obvious. 
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In two- or three-dimensional problems, the artificial viscosity is anisotropic and 
depends on the angle between the streamlines and the grid; an expression for it was 
given by de Vahl Davis and Mallinson ( 1971): 

ICI A.Y, Ax, sin 20 
““=4(ds, cos3 8+ A.uz sin3 0)’ (5.7) 

When the flow is at an angle to the grid, the artificial viscosity tends to reduce 
velocity differences normal to the streamlines. Equation (5.7) shows that the 
problem is most severe when the angle is 45“. Alignment of the grid with the flow 
thus aids the achievement of quality simulations, especially when discretizations 
with diffusive error are employed. For further details on this point, see Trefethen 

[Ql. 

Many flows of engineering interest contain thin shear layers: regions where there 
are strong gradients of the velodity in the direction normal to the streamlines. In 
such layers, the dominant mechanisms are the transport of momentum parallel to 
the streamlines by convection and normal to the streamline by viscosity and/or tur- 
bulence. We saw in Section II that the effect of turbulence is represented, in simple 
models, by an increased effective viscosity. Under the further approximation that 
the pressure is constant in these layers, the equations become parabolic. An 
appropriate model equation is then the diffusion equation: 

(5.8) 

where, to facilitate analysis, we have linearized the equation by setting the convec- 
tion velocity to a constant. The time-like variable is .x,/c. 

For the diffusion equation, there is no reason to use anything other than a cen- 
tral difference approximation for the diffusion term; if one discretizes only the dif- 
fusion term, the result is a stiff set of ordinary differential equations. Numerical 
solution is best effected with an implicit method; nearly all calculations of thin 
shear layers in recent years have used some variation of the Crank-Nicolson 
method. The Keller box method (Cebeci and Keller [70]) can be considered as a 
variant of CrankPNicolson. Thus we have 

c,( Ll I+ 1./r u,,) 

As, 
=& c~,~l.,+I-2~~,+l,+~~+l,,~ I+~,.,+I-2~,,+~L- II. (5.9) 

7 

Explicit methods are unstable unless used with very small step sizes in the time-like 
direction. 

3. Laplace’s Equation 

Another characteristic of incompressible flows is the elliptic nature of the 
pressure. This is best seen by taking the divergence of the Navier-Stokes equations 
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(2.1) and using the continuity equation (2.2). One obtains the Poisson equation for 
the pressure 

Pp au, au, 
-=-p~~ axj ax, 

(5.10) 

which is elliptic. Flows which are dominated by inertial effects, i.e., a balance 
between the kinetic energy and pressure, have this character. Indeed, incompressible 
and steady, subsonic, compressible flows are often called elliptic flows. From the 
numerical point of view, the distinguishing feature of these flows is the existence of 
upstream influence, i.e., effects that propagate from downstream via the pressure 
field. These effects dictate that iterative methods of solution be used. 

The simplest elliptic equation is Laplace’s equation, the homogeneous version of 
Eq. (5.10). It is worth noting that under restriction to inviscid flow and 
irrotationality, the velocity becomes the gradient of a potential which satisfies 
Laplace’s equation. 

Except in rectangular geometry, Laplace’s equation is almost always solved by 
iterative methods. Good all-purpose iterative methods are SOR and ADI. Some of 
the solution methods to be described in Section VI are based on these methods, and 
we shall put off descriptions until then. 

4. Steady Convection-Dlxfuusion Equation 

Another frequently used model is the steady convection-diffusion equation 

au a2u 
‘1 q. = ’ axj axj 

(5.11) 

in which convection is balanced by diffusion in both the streamwise and the normal 
directions. If one ignores cross-stream diffusion, a one-dimensional convectiondif- 
fusion equation, similar to the unsteady convection equation considered in Sec- 
tion 1, is obtained 

au a*u 
c&=vQ. (5.12) 

On the other hand, if streamwise diffusion is ignored, as is reasonable for high 
Reynolds-number flows, one has the diffusion equation considered in Section 2. 
Many authors have used Eqs. (5.11) or (5.12) as a model; the results obtained are 
what one would expect on the basis of the results of the preceding sections. 

We shall present those results for the one-dimensional convection-diffusion 
equation which might not be anticipated from earlier results. When the coefficients 
are constant, Eq. (5.12) has an exact solution. If this solution is compared to 
numerical approximations for a single grid cell, one comes to the conclusion that 
central differencing is preferred for the convection term only when the absolute 
value of the cell Reynolds number, Rece,, = u Ax/v, is less than two. For larger 
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values of Rece,,, upwind differencing is more faithful to the exact result. This has led 
to the widespread use of a hybrid differencing sheme based on cell Reynolds num- 
ber, i.e., central differencing is used if IRecell < 2 and upwind differencing when 
IRecell > 2. Still better matches to the exact single-cell solution may be obtained by 
using polynomial or exponential fits (Patankar [48]). 

Upwind differencing also provides more stability than central difference 
approximations when certain time-like iterative solution methods are used. Stability 
has been advanced as an important advantage of upwind differences, but it is 
important to point out that stability is dependent on the solution method. We shall 
give arguments below which call the importance of using upwind approximations 
into question. 

Since the upwind-difference approximation is only first-order accurate, a number 
of schemes which retain the stability of upwind differencing while providing higher- 
order accuracy have been proposed. Leonard [39] proposed a scheme which uses 
central differences, but the velocities at the cell boundaries are obtained by third- 
order asymmetric interpolation using two upstream points and one downstream 
point. The result is known as the QUICK scheme. For an equally spaced grid in 
one dimension, it estimates the first derivative by 

(5.13) 

When applied to the NavierStokes equations, this method is second-order 
accurate, provides smooth solutions in most cases, and has good stability properties 
of the upwind method. It has been used by a number of authors with good results. 

Methods used for the two-dimensional convectiondiffusion equation are, in the 
main, extensions of the one-dimensional methods. As for the unsteady convection 
equation, the upwind differencing concept is readily extended to two dimensions; 
the same is true for the QUICK scheme (5.13). An alternative improvement on 
upwind differencing which has no one-dimensional analog is the skewed upwind 
difference method suggested by Raithby [Sl]. In this method, the convective 
derivative is evaluated by first determining the intersections of the velocity vector 
through the center of the control volume with the boundaries of the control 
volume. One estimates the velocity components at these intersections by inter- 
polating from the neighbor grid points and constructs a finite difference formula 
based on them. Using the notation illustrated in Fig. 7, we find the difference for- 
mula 

Results obtained with both the QUICK and skewed upwind methods are con- 
siderably more accurate than those provided by the simple upwind method on a 
given grid. However, they sometimes produce solutions with oscillations. 
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FIG. 7. An illustration of the skewed upwind differencing method of Raithby [5 I ] 

Analogous methods have also been developed in conjunction with finite element 
methods. The concepts employed are quite similar, but adjustments must be made 
to account for the differences in the construction of the methods. Such methods 
have been developed by Hemker [27], Hughes, Liu, and Brooks [29], and Chin 
and Krasny [71]. 

Methods which introduce a large artificial viscosity in the streamwise direction 
and a much smaller artificial viscosity in the direction normal to the flow have been 
introduced in both the finite difference and finite element contexts. The objective is 
to obtain the stability that artificial viscosity provides without creating unphysical 
growth of shear layers. However, it is difficult to control the artificial viscosity in 
each direction completely, so the results obtained using these methods need to be 
carefully tested for accuracy before they are accepted. 

5. Burgers’ Equation 

Burgers’ equation 

(5.15) 

is the closest one-dimensional analog to the Navier4tokes equations. Consequen- 
tly, it has been the basis of a number of studies, both analytical and numerical, of 
methods solving the Navier4tokes equations. For this application, its principal 
advantage over the model equations presented above is its nonlinearity; there are 
also a number of exact solutions of Burgers’ equation to which numerical solutions 
can be compared. 

At high Reynolds number, solutions of Bergers’ equation develop sharp fronts 
resembling shock waves. However, as such fronts do not occur in incompressible 
flows, the study of this equation has had relatively little impact on methods used for 
incompressible flows. 
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6. Bounrlar~~ and Initial Condition.~ 

Boundary conditions have not been discussed above; they often receive little 
attention but, in fact, the quality of a simulation often depends on proper treatment 
of the boundary conditions. To begin with, it is important to note that the proper 
boundary conditions to be applied to the NavierStokes equations are still, in part, 
an open question, largely because the proper conditions for the pressure are not 
known. For the model equations, boundary conditions are well known; however, 
they do depend on the type of the model equation. All models require that the 
velocity be provided at any inflow boundary. At a solid surface, for any model 
which does not include diffusion (viscous effects), only the velocity normal to the 
boundary must be set to zero; when viscous effects are included, all components of 
the velocity must be set to zero. At outflow boundaries, no condition is needed if 
the model equations are hyperbolic or parabolic but some type of artificial con- 
dition is needed if the equations are elliptic. Care is needed in extending the results 
to the Navier Stokes equations. We shall return to this issue in Section B. 

For diffusive equations, the boundary conditions lead to the generation of two 
kinds of boundary layers. At lateral boundaries, one has the standard 
hydrodynamic boundary layer whose thickness is proportional to the inverse square 
root of the Reynolds number; in these layers, the velocity has algebraic behavior. 
This was pointed out by Levinson [41] and further developed by Chin et ul. [ 1.51. 

The boundary conditions at the outflow, on the other hand, may give rise to a 
thin region with exponential variation of the velocity. Improper treatment of this 
boundary can cause pollution of computed elliptic flow fields. The problem can be 
avoided by a combination of a careful choice of the outlet boundary condition and 
difference approximation (cf. Hedstrom and Osterheld [74]. In particular, a com- 
bination of zero gradient (or, what is often the same thing, zero flux) boundary 
conditions and upwind differencing usually reduces the seriousness of the problem. 

B. Applicatimr to thr Nuvirr-Stokes Equations 

The preceding section shows the richness of possible behavior in incompressible 
flows; when additional effects such as compressibility, density differences, or mul- 
tiphase mixtures are included, the menu becomes even more varied. A single flow 
may exhibit several of the kinds of behavior described. This makes the choice of a 
differencing method difficult, and it is hardly surprising that a variety of methods 
have been proposed and that there are contradictory remarks on the subject in the 
literature. 

There is no unique best method at present. Authors, naturally, make claims for 
their methods and, in some cases, arguments against competing methods. There are 
probably a number of methods capable of producing the solution to any given 
problem. Conversely, there are problems that can make almost any method look 
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bad. Thus, we cannot recommend a single all-purpose method. Rather, we shall 
look at some of the most promising candidates. 

The most popular method of solving incompressible turbulent flow problems at 
present is the TEACH method developed by Spalding and colleagues (cf. Caretto 
et ul. [ 121) and extensions of this method. We shall present a short overview of the 
basis for this method. 

Most methods for incompressible flow, including TEACH, use staggered grids. 
As noted in Section IV, the staggered grid has a number of advantages. In par- 
ticular, by locating the variables at the centers of the control volumes, the accuracy 
of the difference formula is increased. Also, the staggered-grid difference scheme 
conserves mass, momentum, and kinetic energy in a very natural way. Offsetting 
these advantages are the difficulties that staggered grids have in using variable-grid 
spacing and boundary-fitted grids. 

We shall give the differenced form of the Navier-Stokes equations for the 
staggered grid shown in Fig. 6. For this purpose, it is sufficient to consider the 
equations without a turbulence model; issues that arise when a turbulence model is 
included will be discussed later. When central differences are used, the difference 
form of the .u-momentum equation is 

+c(~,,+~,,+I)(~,,+~, ,,I-(u,,+u,, ,)(c,, ,+u, ,,-,)1/4d-u2 

=-P ‘(PI,-P, ,,)/A-~’ 

+ 1’ 
(U ,+1,-2~;,+~, ,d+b-2u,;+%l) 

A.$ 1 Ax; . 
(5.16) 

The difference form of the y-momentum equation is essentially just a rotated form 
of this equation and will not be given here. The difference form of the continuity 
equation is 

ui+I/-",, u,, - u;, ~ ] 

AS, 
+ = 0. 

AX, 
(5.17) 

Any of the difference schemes described in the preceding section can be applied in 
place of central differencing for the convective terms. The hybrid approach in which 
the choice between central and upwind differences is governed by the cell Reynolds 
number was commonly used until recently; however, it is only first-order accurate 
and has a diffusive error. In the past few years, the deficiencies of that approach 
(principally the first-order accuracy) have come to be recognized, and a more 
accurate hybrid approach which uses central differences when the cell Reynolds 
number is small and either the QUICK or the skewed upwind method for high cell 
Reynolds number has become more popular. Although individual authors prefer 
one or the other of the upwind methods, the evidence does not clearly favor either 
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method. Leschziner [40] showed this and also showed the superiority of these 
methods over the first-order hybrid method. 

The argument for hybrid methods and the upwind difference methods on which 
they are based rests on two points. The first is the behavior of these methods when 
applied to the convective-diffusion model equation and the second, experience with 
a particular solution technique, described in the next section, for which upwind dif- 
ferencing is stable and central differencing is not. However, the hybrid methods may 
not be appropriate in flows that are dominated by either free shear layer behavior 
or by pressure forces. For both of these cases, central differencing is more faithful to 
the physics of the problem at all cell Reynolds numbers than are the upwind 
schemes. Indeed, good results have been obtained at high Reynolds numbers using 
central differencing (Kim and Moin [33]); this suggests that the upwind methods 
may be required more for stability of the solution method than for accuracy. The 
lesson to be learned here is that differencing schemes and solution methods interact 
in ways which are not well understood and caution is therefore required in 
extending results obtained for model problems to the Navier-Stokes equations. 

In the absence of a clear best method for all purposes, it is best to adopt a 
scheme that has been successfully applied to flows similar to the one to be 
simulated. It is likely that, in the future, methods which use difference schemes 
adapted to particular regions of a flow will be developed; such schemes are already 
in use in compressible flows where the distinction depends on the equation type 
changing from elliptic to hyperbolic as the Mach number crosses unity. 

The arguments relating to conservation are similar. A number of authors have 
found methods which are unstable when conservation is lacking and have 
generalized their findings by stating that conservation is always required. However, 
calculations have been made with nonconservative methods that appear to be both 
stable and accurate. 

The difference approximations applied to the partial differential equations 
representing the turbulence model are essentially the same as those applied to the 
continuity and momentum equations. In the staggered grid scheme, the turbulent 
kinetic energy and dissipation are located at the pressure nodes. Derivation of the 
difference form of the equations follows the lines used for the other equations. The 
major change introduced by turbulence models is that the additional equations 
introduced by the models are generally stiff; therefore, more care is needed in 
solving them. 

2. Boundury C’onditions 

The issue of boundary conditions nearly always receives less attention than the 
differencing of the equations themselves. However, the quality of a simulation may 
depend very strongly on boundary conditions used. We shall consider only the case 
of elliptic flows. 

Initial conditions, i.e., conditions at the inflow boundary, are part of the problem 
statement; one would expect them to be easy to specify. However, all 
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variables-velocity, pressure, and any variables required by the turbulence 
model-must be specified at the inflow. Many flows are very sensitive to small 
changes in the initial conditions. Usually this is a consequence of placement of the 
upstream boundary near a corner. The state of a flow at such a location is difficult 
to determine, and improper specification of it may lead to large errors in the 
solution. The best cure for this problem is to place the boundary at a location 
farther upstream, where the state of the flow is more accurately known. Turbulence- 
model quantities are difficult to specify accurately, because measurements are often 
not available for them; and some quantities (such as the dissipation used in two- 
equation models) are not measurable at all. Incorrect specification of these quan- 
tities may result in inaccurate solutions some distance downstream of the inflow 
boundary. 

At outflow boundaries, the situation is not clear; fortunately, errors made at the 
outflow boundary normally propagate only a few grid points upstream into the 
flow and are therefore of less consequence than errors made almost anywhere else. 
However, the placement of the outflow boundary may have an important influence 
on the results. Most authors prescribe the gradients of all velocity components, the 
pressure, and turbulence quantities to be zero at outflow boundaries. For time- 
dependent problems, some authors prefer to set the convective or substantial 
derivatives to zero at outflow boundaries. 

At solid walls, two types of boundary conditions are used. The first is similar to 
the conditions used for laminar flow, i.e., all velocity components are set to zero at 
the wall. For the staggered grid, the boundary coincides with the nodes used for the 
normal velocity, as shown in Fig. 8, and the normal velocity is set to zero at these 
nodes. For the tangential components of the velocity, the boundary condition must 
be enforced by extrapolation from the two mesh points closest to the wall. The dif- 
ference formula for the viscous term is then very inaccurate at the first grid point; 
the approximation normally used is not even first-order accurate. 

The second type of boundary condition is not actually applied at the wall. In tur- 
bulent flows, the steepest velocity gradients occur in the region closest to the wall. 
Very line nonuniform grids are required for accurate resolution of this region. 
Typically, the innermost live percent of the flow absorbs half of the total grid 
points. Furthermore, some turbulence models are not accurate in the vicinity of 
solid boundaries. For these reasons, it is common practice to omit the innermost 
region of the flow from the simulation and to apply an artificial boundary condition 

v  u u Y 

FIG. 8. The treatment of the solid boundaries using the staggered grid. 
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at a point some distance from the boundary. The artificial boundary condition is 
generated by solving an approximation to the momentum equation for the region 
between the actual wall and the first mesh point. This approximate solution 
provides a relation between the tangential velocity at the first mesh point and its 
normal derivative. 

The boundary conditions to be applied to the pressure at a solid boundary are 
the subject of some controversy. The issue arises mainly when the pressure is deter- 
mined from the Poisson equation (5.10); this is usually the case for time-like 
methods of solutions (see Sect. VI). With staggered grids, it is possible to avoid 
specifying any boundary conditions for the pressure at the surface. Although accep- 
table solutions are obtained, this violates a fundamental property of elliptic 
equations. Since it is the differentiation of the fundamental equations which 
produces the Poisson equation and thereby causes the need for the boundary con- 
dition, Strikwerda [58] suggests avoiding use of this method. 

Boundary conditions for the pressure can be derived from either of the momen- 
tum equations. However, these lead to different boundary conditions and it is not 
clear that both sets can be satisfied simultaneously. Indeed, Moser and Moin [76] 
suggested that the pressure may not be analytic near a solid surface. 

Turbulence models are not as well developed for the vicinity of the wall as they 
are for the freestream: this is a major reason for using the artificial boundary con- 
ditions described above. Boundary conditions on turbulence-model quantities are 
difficult to fix. The turbulent kinetic energy goes to zero at the wall, but, when 
artificial boundaries are used, the boundary is in a region in which zero-gradient 
boundary conditions may be more appropriate. Zero-gradient boundary conditions 
are also applied to the turbulence dissipation. 

C. Spectral Mrthods 

Spectral methods, although they are quite specialized, are seeing increased 
application. They are based on Fourier series and its generalizations. 

Continuous Fourier series are familiar to nearly everyone. Not quite as well 
known are the discrete Fourier series and its generalizations; the reader unfamiliar 
with them is referred to the books by Bracewell [lo] and Brigham [ 111. In brief, in 
a discrete Fourier series, a function defined at an evenly spaced set of grid points is 
represented as a finite series of Fourier (e’k’) functions. The coefficients of the series 
can themselves be expressed as finite Fourier series with the values of the function 
at the grid points acting as the coefficients. 

Thus, given the values of a function at the mesh points, it is possible to compute 
its discrete Fourier coefficients. If these are substituted into the discrete Fourier 
series, the function is reconstructed at the mesh points. More significantly, a dis- 
crete Fourier series can be extended to a continuous function by replacing the dis- 
crete variable by a continuous one, i.e., discrete Fourier series can be used as an 
interpolation scheme. The resultant interpolant can then be differentiated, yielding 
accurate approximations to the derivatives of the function. Indeed, for smooth 
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functions, the result is more accurate than any linite-difference formula. This makes 
spectral methods very attractive as differentiators and, therefore, as tools for the 
solution of differential equations. 

The discovery of a fast algorithm for the computation of discrete Fourier trans- 
forms (Cooley and Tukey [ 181) has reduced the cost of spectral methods and 
thereby made them practical. 

Standard Fourier series are most valuable when periodic boundary conditions 
can be applied. When nonperiodic boundary conditions are required, accuracy is 
lost. To achieve the potential of the spectral approach in these cases, one must use 
other functions. For domains with solid boundaries, Chebychev polynomials have 
been used by a number of authors, as have other sets of orthogonal polynomials. 
Many of these function sets do not permit use of the fast-Fourier-transform 
algorithm, thus increasing the cost. One can usually use orthogonal functions in 
one coordinate direction with only a modest increase in the overall cost of a 
calculation. For a review of spectral methods, see Gottlieb and Orszag [ZS]. 

VI. SOLUTION TECHNIQUES 

A. ClassiJication qf Solution Methods 

After a turbulence model has been put in place and a finite difference 
approximation chosen, one needs to select a method of solving the resulting 
equations. In part, the choice depends on the nature of the problem. For unsteady 
problems, one clearly needs a time-accurate method. For stationary problems, on 
the other hand, a number of strategies are available, including relaxation 
procedures based on unsteady methods. In this section, we shall be primarily con- 
cerned with methods for the stationary case; methods for unsteady problems will be 
considered primarily for their application to the steady case. 

The system of algebraic equations resulting from finite differencing the steady 
NavierStokes equations is large, nonlinear, and sparse. For such systems, iterative 
techniques are the only recourse. For nearly all techniques, the number of iterations 
required to obtain a converged result is only mildly sensitive to the quality of the 
initial guess, so there is no point in putting effort into the construction of an 
accurate initial field. Usually, some simple initial condition, such as a uniform flow, 
is assumed. 

Our interest centers on solution techniques for steady elliptic flows. In such flows, 
the velocity in the principal flow direction may change sign somewhere in the flow; 
such flows are also referred to as recirculating or separated flows. For flows in 
which velocity reversal does not occur, e.g., attached boundary layers and free shear 
layers, the equations can often be approximated by parabolic ones, and marching 
methods of solution are then available and preferable; we shall not consider 
methods for these problems here; see Patankar [48] or Cebeci and Bradshaw [ 133 
for these. 
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For elliptic problems, three major solution strategies are employed. These are: 

(a) One can consider the steady solution as the infinite time limit of an 
unsteady problem. As the time history is then merely a route to be steady state, 
time accuracy is irrelevant and one should use the largest possible time step. We 
call these time-like methods. 

(b) Excellent methods have been developed for solving the compressible 
Navier-Stokes equations. To apply these to the incompressible equations, one can 
modify the latter to make them resemble the compressible equations. The terms 
added to the equations must, of course, disappear in the steady limit. These are 
called artificial compressibility methods. 

(c) One can regard the steady-flow, finite-difference equations as a large set 
of nonlinear algebraic equations and solve them by some standard technique for 
such systems. We call these fully coupled methods. They, too, are iterative. 

These categories of methods will be reviewed in the remainder of this chapter. 

B. Time-like Methods 

A familiar strategy for solving stationary problems involving partial differential 
equations is to run a method appropriate to unsteady problems until a steady 
solution is found. The primary difference between a truly unsready problem and a 
relaxation method for a steady problem is that in the latter case only the long-time 
solution matters. As th: time history need not be accurate, one may use a much 
larger time step than in the unsteady problem. 

The principal obstacl: to solution of the unsteady, incompressible, Navier-Stokes 
equations is the lack of a time derivarive in the continuity equation; the lack of an 
explicit equation governing the pressure is another manifestation of the problem. 
To remedy this situation, it is common to use the Poisson equation (5.10) for the 
pressure in place of the continuity equation. 

For time-accurate solutions, accuracy demands small time steps, so there is little 
reason to use implicit methods; explicit methods are preferred. In relaxation 
methods for steady problems, the larger time step permitted by implicit methods 
becomes important. However, fully implicit methods for nonlinear equations are 
costly, so, in practice, linearized implicit methods are employed. 

The basic method of time accurately solving the equations was given 
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where 6/6x represents a finite difference operator. The resulting velocity field ~7 + ’ is 
not divergence-free. However, taking the divergence of Eq. (6.1) (the numerical 
divergence operator must be the one used in differencing the continuity equation), 
assuming that the velocity field at t,, is divergence-free, and requiring that the 
divergence of the velocity be zero at t,, + r, we arrive at a numerical form of the 
Poisson equation which we write as 

so that, if the pressure p” satisfies Eq. (6.2), the velocity field satisfies continuity at 
t ,z+ 1. It is important to note that the difference form of the Poisson equation can- 
not be chosen independently of the numerical approximations made in the momen- 
tum and continuity equations; for some difference schemes, this requires application 
of an inaccurate difference scheme to the Poisson equation. 

This method inherits the difficulties associated with the pressure boundary con- 
ditions noted in Section V.B.2. Also, except in simple geometries for which fast, 
direct techniques are available, the Poisson equation must be solved by an iterative 
method; this may make the method as a whole slower. The method described in the 
following section overcomes some of these difficulties. 

2. The SIMPLE Method 

The arguments made in the preceding section suggest solving steady-state 
problems by a combination of linearized implicit time advancement of the velocity 
and solution of the Poisson equation for the pressure. The most expensive part of 
such a calculation would be iterative calculation of the pressure. However, there is 
no need to compute the pressure accurately until the steady state is reached, so a 
better strategy is to iterate the Poisson equation no more than a few times or, 
perhaps, only once, at each step. 

Some of the best methods of this type are the SIMPLE algorithm developed by 
Caretto et al. [ 121 and extensions of it. Although the algorithm is designed for the 
steady-state equations, it is a kind of relaxation algorithm based on a fractional 
step time-like method. We shall illustrate the method with the central differences for 
the spatial derivatives, but any of the other approximations described earlier could 
be used. 

The method begins with guesses at the pressure and velocity fields, p” and ~4:‘. A 
new velocity field is computed using a linearized implicit approximation to the 
staggered grid finite difference momentum equations. At mesh point j, k for the .Y- 
momentum equation, one has: 

(6.3) 
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These equations are solved by a block or line relaxation (line-by-line) method. On 
each line in one direction, one solves these equations using a block tridiagonal 
algorithm. For efficiency reasons, only one iteration (one sweep) is carried out. The 
result is a first approximation to the velocity at the new time step, u*. 

To update the pressure. the momentum equations are first linearized about p” 
and u*. These equations are further simplified by eliminating all of the con- 
tributions from the velocities at the neighboring points to give an equation of the 
form 

The empty brackets indicate that the contents depend on the difference scheme used 
at the particular point. When the divergence of these equations is taken, the result 
is an approximate Poisson equation for a pressure correction, which is also given a 
single line iteration. The resulting pressure correction is then used to update the 
pressure, and the velocity is updated using Eq. (6.4). At this point, an iteration is 
complete and we are ready to begin another one. 

Some features of this method reflect the empiricism employed in its construction. 
It is difficult to apply the methods of numerical analysis to study the behavior of 
this method (or most other methods for these equations). Consequently, knowledge 
of the behavior of this method is based on experience in computing flows with it. 
The following behavior of this method has been observed: 

(1 ) It requires an upwind difference approximation to converge at high 
Reynolds numbers. For discussion of this point, see Section V.A. 

(2) It is capable of handling a wide range of flows without difficulty. 

(3) Its rate of convergence is nearly independent of Reynolds number. 
Typically, 2OOG400 iterations are required. 

The last result may be a consequence of the use of upwind differencing. As shown 
in Section V, upwind differencing introduces artificial viscosity into a simulation, 
thus causing the effective Reynolds number to increase much more slowly than the 
actual Reynolds number. Some of the author’s students (Avva et al. [67]) have 
recently shown that, when central differences are used, the number of iterations 
required for convergence increases more rapidly with Reynolds number than for 
upwind differences. 

The number of iterations required for convergence of these methods is greater 
than the number of iterations required by similar methods applied to simple, ellip- 
tic, partial differential equations such as Laplace’s equation. A number of reasons 
for this have been given; these include the asymmetry of the matrices, the lack of 
diagonal dominance in the matrices, nonlinearity, and the mixed nature of the 
equations, i.e., they are not entirely elliptic. While all of these are certainly con- 
tributors to the problem, none is a completely satisfactory explanation. Our ability 
to analyze methods of solving the equations of fluid mechanics is very limited at the 
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present time. As a result, most of what is known about these methods is based on 
extensions of and analogies with results for model equations. As we have seen in 
Section V, this kind of reasoning is quite risky. 

A number of modifications/extensions of the SIMPLE method have been made. 
Some, such as the SIMPLER method of Patankar [48] offer faster convergence at 
the expense of higher computation cost per iteration. The overall savings are not 
large. 

3. Frucrionul Step Methods 

In fractional step methods, a differential equation is treated as a composite of 
simpler equations. These methods were originally developed in the Soviet Union (cf. 
Marchuk [44]). Their chief advantage is the great flexibility they offer in the selec- 
tion of algorithms; they bear a strong resemblance to splitting (ADI-like) methods. 

To apply the fractional step method to the incompressible Navier-Stokes 
equations, one must regard the latter as a composite of convective, pressure 
gradient, and viscous equations. Each of these may be advanced in time indepen- 
dently or in combination with the others. Consequently, a great variety of methods 
is possible. As an example, we shall describe the method of Kim and Moin [33]; as 
it is primarily designed and used as a time-accurate method, we shall be brief. 

The method was developed because, for wall-bounded turbulent flows in which 
the boundary conditions are applied at the actual surface, accuracy demands small 
grids in the normal direction near the wall. Some of the viscous terms must then be 
treated implicitly in order to avoid severe restrictions on the time step. Efficiency 
requires use of a splitting method. Kim and Moin’s method consists of three frac- 
tional steps. In the first step, provisional velocities are computed by treating the 
convection terms explicitly and viscous diffusion in the x, direction implicitly. The 
second step treats the .x2 direction diffusion implicitly and the convection terms 
explicitly. The velocity so obtained does not satisfy continuity, so the pressure is 
constructed in a way that removes the divergence of the velocity; this requires a 
Poisson equation and is similar to the method of Section A. 

We end this section with a few remarks specific to computations containing tur- 
bulence models. Introduction of a turbulence model increases the number of 
equations that need to be solved and, therefore, the cost and storage requirements. 
Moreover the equations for the k -E model are stiff, as a result, calculations con- 
taining turbulence models often require smaller underrelaxation factors for con- 
vergence, and the number of iterations required increases. 

C. Artjficial Compressibility Methods 

Ability to predict transonic flows is essential to the design of aircraft and engines. 
The need for computational methods for these flows has been a driving force behind 
the development of methods for computing compressible flows. Consequently, the 
state of the art is more advanced for computation of compressible flows than for 
incompressible flows. Some particularly important advances have been the develop- 



INCOMPRESSIBLE TURBULENT FLOWS 39 

ment of a fast, explicit algorithm by MacCormack [42] and the development of 
fast, split, implicit (ADI-like) methods by Beam and Warming [8] and Briley and 
McDonald [68]. Also, as noted earlier, most of the methods for handling complex 
geometry were first developed for compressible flows. 

It is natural to attempt to apply methods developed for compressible flow to the 
incompressible case. The first such method was presented by Chorin [ 161. 
Improvements, mainly in the direction of using newer compressible flow methods, 
have been made by Steger and Kutler [57] and by Chang and Kwak [ 141. 

The basis of these methods is the introduction of an unphysical time-derivative 
term into the continuity equation. If time accuracy is to be maintained, the added 
term must have a small coefficient. On the other hand, if the method is used only to 
find steady-state solutions, the added term has no effect on the converged result and 
its coefficient is of little import. 

As the density is constant in incompressible flows and the pressure is the variable 
for which there is no explicit evolution equation, it is natural to add to the con- 
tinuity equation a term proportional to the time derivative of the pressure. Thus, 
the authors referenced above use 

(6.5) 

where p ’ is the artificial compressibility and must be large if Eq. (6.5) is to 
approximate the incompressible equation. This equation is not be solved together 
with the momentum equations (2.1); they form a set which is hyperbolic in charac- 
ter and therefore solvable with methods used for the compressible equations. Chang 
and Kwak [ 141 showed that, for the one-dimensional form of these equations, the 
effective sound speed is 

c=(u’+lj)‘2. (6.6) 

The effective Mach number thus is always less than unity. Waves travel at speeds of 
u f c. As the two wave speeds differ considerably in magnitude, especially if /I 9 u’, 
the problem is stiff and implicit methods of solution are required. 

Chang and Kwak used the Beam-Warming [S] method for solving these 
equations. In this method, the equations are time-differenced using the trapezoid 
rule (CrankkNicolson), linearized, and approximately factored in the AD1 manner. 
One then has to solve a block-tridiagonal system on each line of the grid. These 
authors offered the following criterion for choosing the compressibility parameter: 

2 pp 1’; -1 ( ) L 
(6.7) 

where L is the length of the computational region. They found that with parameters 
satisfying this criterion, the method converged in approximately 200 iterations; the 
number of iterations is not very sensitive to the choice of the compressibility 
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parameter. This is comparable to the number of iterations required by the time-like 
methods of the preceding section. 

D. Fully Coupled Methods 

As noted above, iterative methods which work well for simple types of partial dif- 
ferential equations work less well for solving the equations of fluid dynamics, both 
compressible and incompressible. The convergence of iterative methods is slow, and 
analysis of them is difficult. Reasons were given earlier; the major problem seems to 
be that the matrices do not allow the well-established iterative methods for simpler 
equations to function at their best. 

An alternative to these methods is to regard the finite-differenced incompressible 
Navier-Stokes and continuity equations as a large set of nonlinear equations to be 
solved as such. One can apply iterative methods such as Newton-Raphson to this 
system. Since these methods typically converge in a small number of iterations, this 
approach is very attractive. 

The basis of the method is well known. The system of finite-difference equations 
can be written formally as: 

./;c u 1 = 03 ,j = 1, 2 ,..., N, (6.8) 

where the vector u represents the variables at the mesh points. In the arrangement 
usually preferred, u = (U ,,, , c ,,, , p,,, , u ,,?,...). These equations are linearized about 
some initial guess or previous iterate of the solution 

,f;zzf;(u”)+(ua-z4:l)~(u”). (6.9) 
c MI, 

The result is a very large but sparse system of linear algebraic equations; in two 
dimensions, the size of the matrix is 3N x 3N, where N is the number of mesh points 
used. 

A number of points should be noted. First, the method is similar to the time-like 
methods of the preceding sections. Second, the matrix is so large it will not tit in the 
central memory of most computers, even for moderate-sized problems in two 
dimensions, unless some special storage scheme that takes advantage of its spar- 
seness is used. Third, it is possible to solve the linearized problem with iterative 
methods; indeed, for large matrices with banded structure, such as the one in 
Eq. (6.9), iterative methods have been the methods of choice. 

However, Vanka and Leaf [64] poiinted out that one of the major difficulties 
with methods described in the preceding two sections is the poor behavior of 
iterative methods for the matrices that arise in fluid-dynamical applications. 
Although they did not try iterative methods, they suggest that direct solvers are a 
better choice. To avoid dealing with a large matrix, a sparse matrix solver was 
chosen. An alternative, suggested by Vanka [65] is to use a decomposition method. 
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Experience with these methods is limited to just a few cases at the present time. 
However, for those cases, Vanka reports that the method converges in the small 
number of iterations expected of the Newton-Raphson method. The use of direct 
solution methods makes the cost of an iteration much larger than in time-like 
methods, but overall computation times of one fifth of those required by SIMPLE 
have been reported. Thus, the method seems promising; further experience with it is 
required before it can be promoted as the preferred method. 

E. Speciul Tools 

Before closing this chapter, we should make note of methods that promise to 
become very important in the future. These include multigrid methods, domain- 
decomposition methods, and algorithms for parallel computers. Although our dis- 
cussion of each will be brief (mainly, because these methods are under intensive 
development at present), the potential of these methods should not be 
underestimated. 

One reason why many iterative methods converge slowly is that information 
propagates slowly; in explicit methods, signals may travel only one mesh point per 
iteration. As a result, most iterative methods tend to damp out the rapidly 
oscillating (high wavenumber) components of the error relatively quickly; reducing 
the slowly varying part of the error requires many iterations. 

To improve the rate of convergence, the multigrid method uses grids of various 
coarseness. First, a few iterations are performed on the finest grid to remove most 
of the high wavenumber error. The solution is then restricted to a coarser grid 
(usually the grid size is doubled) on which a few iterations are performed to remove 
low-wavenumber error components. The solution is then interpolated back onto the 
fine grid, completing one cycle; the entire procedure is repeated until convergence is 
achieved. Naturally, more than two grid levels can be employed. 

Usually only a few cycles are required to achieve convergence. Together with the 
low cost of iterations on the coarser grids (in two dimensions, each iteration at a 
given level costs a of the cost on the next finer level), this results in a considerable 
reduction of the total cost. 

2. Domctin Decomposition 

One means of overcoming the difficulty with complex geometries, noted in Sec- 
tion 3, is domain decomposition. In this method, the solution domain is divided 
into geometrically simple subregions which may or may not overlap. Each sub- 
region is easily mapped into a rectangle, and the problem is thereby reduced to one 
on a set of rectangles. 

One of the standard solution methods described above is applied to each sub- 
region successively. Where the subregions touch or overlap, boundary conditions 
are taken from the latest solution on the neighboring regions. 
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This method is a promising approach to dealing with problems in complex 
geometries and is well matched to application on parallel computers (see below). 

3. Parallel Computers 

In the past, computer speeds were increased by the application of newer 
technologies and by decreasing the size of the circuits. Although there is much still 
to be gained by improvements of these types, some fundamental limits are 
beginning to be reached. Also, the low price of microprocessor chips makes the 
possibility of using multiple processors attractive; numbers of processors in the 
thousands have been considered. 

The difficulty with parallel computers is that many algorithms in common use 
(e.g., tridiagonal matrix solvers and fast Fourier transforms) are inherently serial 
and cannot make the most effective use of parallel machines. Thus there is a need 
for the development of new algorithms for parallel machines. 

This chapter has presented three types of methods for solving the discretized, 
incompressible Navier-Stokes equations and some approaches that promise to 
provide significant imporvements in computation time in the near future. Of the 
methods presented, the time-like methods, especially those based on alternating 
velocity and pressure updates, are the most advanced and most commonly used; 
they are reliable and robust, but most of them require upwind differencing to con- 
verge and are relatively slow. Artificial compressibility methods are next in both 
state of development and popularity; they allow access to the large body of work 
for compressible flows but, at the present time, seem to be no faster than methods 
of the first category. Fully coupled methods offer the possibility of faster com- 
putation times, but experience with them is limited and considerable work will need 
to be done before they see wide use. 

VII. OTHER APPROACHES TO TURBULENT FLOW COMPUTATION 

The methods described above may be called full-field methods; they compute the 
velocity everywhere in the flow by a single method. These methods have a number 
of desirable features, the most important of which is the ability to simulate a variety 
of flows with a minimum of user worry about the details of the calculation. Their 
biggest drawback is cost. Other, less expensive, methods may serve equally well or 
better in specific applications. In some applications, the methods described above 
do not produce sufficient information about the flow at affordable cost. In this 
chapter, we shall take a brief look at some more specialized methods. 

A. Zonal Methods 

Prior to the advent of large computers, the most common method of predicting 
turbulent flows involved dividing the flow into two or more zones, each of which 
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was treated by a different method. The methods for individual zones were connec- 
ted by iteratively passing boundary-condition data back and forth. 

The best known method of this kind regards a flow over a body as a combination 
of a thin, viscous, boundary layer near the solid surface and an inviscid region, 
which is typically modeled as potential flow, far from the surface. The advantage of 
this approach is that turbulence effects are restricted to a zone which is 
mathematically parabolic and therefore amenable to solution by marching methods. 
Conversely, elliptic behavior occurs in regions governed by simple equations. For 
flows in which the boundary layer does not detach from the body, this method con- 
verges in a few iterations and is much faster than full-field methods. Offsetting these 
advantages are the need for iterating between the zones and the necessity of 
tailoring the method to each class of problems. 

This method is applicable only to a limited range of flows. Extension of the set of 
flows which can be computed requires major changes in the method. In particular, 
the development of a zonal method for a new flow may require the development of 
new turbulence models and/or correlations, new numerical methods, and new 
iterative methods. The cost of developing these methods essentially limits this 
approach to applications which require the same calculation to be done many 
times. One advantage of the zonal approach is its ability to capitalize on the 
author’s knowledge of the physics of the flow. Codes based on this approach have 
proven workhorses in a number of industrial applications. 

Although full-field methods are widely used, zonal methods are still commonly 
used in inductrial applications. Recent advances include the development of 
methods for computing separated flows. A method for internal separated flows was 
given by Bardina et N/. [6], while van Dalsem [77] has given a method applicable 
to external flows; both methods are applicable to both incompressible and com- 
pressible flows. 

Another approach to achieving cost-effective, design-oriented simulations of 
three-dimensional flows is a approximate them locally by two-dimensional flows. 
An example of this kind of method is the strip method used in the design of aircraft 
wings, propellors, turbine blades, and fans. In this approach, a narrow spanwise 
section of the three-dimensional body is treated in isolation by a two-dimensional 
method; the three-dimensional flow field is approximated by a juxtaposition of the 
two-dimensional fields. Although this method has obvious limitations, it has been 
used with considerable success for a long time and is very inexpensive. 

Turbulent flows are necessarily vertical, which means that the dynamics of vor- 
ticity plays an important role in the creation and distruction of turbulence. Another 
type of flow, called vortex flow, is dominated by a small number of well-defined 
vortex structures. The discovery of the importance of coherent structures in tur- 
bulent flows (Brown and Roshko [69]) has somewhat blurred the distinction 
between these two classes of flows. 
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When the velocity field is largely determined by small but intense concentrations 
of vorticity, modeling the flow by following the vorticity field rather than the 
velocity field is a sound approach. This makes it possible to concentrate the com- 
putational resources in a limited spatial domain, thereby achieving a much more 
accurate calculation for a given cost. A number of methods based on following the 
vorticity field have been developed. These include field methods which solve the 
partial differential equations for the vorticity (vorticity field methods), others which 
compute interactions between vortex elements directly (vortex tracking methods), 
and hybrids between the two (vortex-in-cell methods); within each category there 
are a number of variations. 

Vortex-tracking methods are completely Lagrangian and grid-independent. The 
coordinates of a vortex may be completely arbitrary, contributing to the accuracy 
of the method. Interactions between the vortices are computed using the 
Biot-Savart law. The major source of inaccuracy in these methods arises from the 
representation of the vorticity by discrete elements rather than continuous dis- 
tributions. The greatest disadvantage of vortex-tracking methods is that the cost 
scales with the square of the number of vortex elements and grows much more 
rapidly than for other methods. Also, for three-dimensional flows, the geometry of 
the elements can become complex, increasing both the difficulty of programming 
and the cost. 

Vortex methods are ideally suited to vortex flows and compete very well with 
other methods in turbulent flows in which the turbulence is confined to thin 
regions. Free shear flows and some boundary layers are examples of this kind of 
flow. They have also been used, with more limited success, in flows with widely dis- 
tributed turbulence. 

As with other subjects touched upon in this paper, a thorough discussion of vor- 
tex methods would require a separate paper. The reader interested in details is 
referred to the review papers of Leonard [37, 381. 

C. Full and Large EddJt Simulations 

Supercomputers have made it possible to solve the Navier-Stokes equations for 
the three-dimensional, time-dependent motions that are the essence of a turbulent 
flow. Two different approaches have been employed. Full simulations attempt to 
resolve all of the scales of the motion and apply only to simple low Reynolds num- 
ber flows. Large eddy simulation models the small-scale motions (in much the same 
way as the models described in Section II) while computing the large scales 
explicitly and can be applied to a broader range of flows and higher Reynolds num- 
bers. 

The cost of these simuations is high; a single simulation may require anywhere 
from a few minutes to many hours on the largest computers. Consequently, the 
community of users of these methods is small, but is growing rapidly. Interest in 
these methods derives from their ability to produce information about turbulent 
flows that is complementary to experimental data and the ability to control con- 
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ditions in a way not available to most experimentalists. A typical simulation yields 
all three velocity components and the pressure on a mesh of 64 x 64 x 64 points for 
several hundred to a few thousand time steps, representing several seconds of 
physical time. The time span is much shorter than most laboratory records, but the 
wealth of spatial resolution is invaluable. 

The nature of these methods dictates that they be used primarily to study the 
physical mechanisms of turbulence and to develop correlations and models of the 
kind described in Section II. They are proving very valuable in this connection. 
Again, space does not permit covering this area in detail here; for recent reviews, 
see Ferziger [24] or Rogallo and Moin [SS]. 

VIII. STATE OF THE ART 

All of the areas covered in this paper are the subjects of intensive research. A 
paper on this subject written a few years from now will probably be quite different. 
In this section, we shall try to assess what can be done today and what develop- 
ments might be expected in the future. Some of the opinions expressed are con- 
troversial and are those of the author rather than a consensus of a large number of 
people; the latter probably does not exist today. 

First, the importance of the advances in hardware in the coming years cannot be 
overemphasized. VLSI technology will improve capability by a large margin, both 
by making computers much cheaper and by allowing the production of supercom- 
puters with much larger memories. This will contribute to rapid continued growth 
of the importance of computers in fluid mechanics in general and in turbulent flow 
computation in particular. 

Turbulence modeling is the area in which progress seems to be the slowest. It 
seems likely that a variety of models will continue to be used and that models based 
on partial differential equations for turbulence quantities will increase in impor- 
tance and popularity. However, evidence seems to be accumulating that present 
models are not accurate enough for many engineering purposes and that models of 
the future will need to be tuned to the physics of particular regions of the flow, i.e., 
they will be zonal in nature. 

Methods used to generate grids, especially for three-dimensional flows, need con- 
siderable further development. In this area, tinite elements are currently ahead of 
finite difference methods. It seems likely that finite difference methods will adopt 
some of the concepts used for finite elements, so that methods of the future may be 
hybrids. For example, methods in which finite-element ideas are used to map the 
considered domain into a set of rectangles which can be treated with finite differen- 
ces that allow fast solution techniques may come to the fore. 

A persistent problem in the computation of turbulent flows has been the lack of a 
method for estimating numerical errors. This has led to blaming turbulence models 
for errors that are caused by inadequate grid resolution, finite difference 
approximations. or incomplete convergence. Techniques which detect these errors 
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and correct them by refining the grid where necessary are known as adaptive grid 
methods and are likely to become important in the future. 

The optimum choice of finite difference approximation is not settled at present. 
As we have seen, the dominant physical phenomena in a particular region of a flow 
govern the appropriate choice of a difference approximation. Zone-dependent dif- 
ferencing in which the method is tailored to the nature of each particular region 
may be a method of the future. Automation of grid-generation procedures is very 
desirable but will require some time to develop. The trend toward use of methods of 
at least second-order accuracy will probably also continue. 

Present solution techniques leave much room for improvement. The directions 
are not entirely clear, but implicit or direct methods offer the best possibilities. 
Techniques in which different time steps are used in different zones of the flow or, 
perhaps, are applied to different terms in the equation, which have recently shown 
promise in compressible flows, may be developed. 
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